Automatic Signature Verifier Using Gaussian Gated Recurrent Unit Neural Network
Handwritten signatures are one of the most extensively utilized biometrics used for authentication, and forgeries of this behavioral biometric are quite widespread. Biometric databases are also difficult to access for training purposes due to privacy issues. The efficiency of automated authenticatio...
Gespeichert in:
Veröffentlicht in: | IET biometrics 2023-11, Vol.2023, p.1-12 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Handwritten signatures are one of the most extensively utilized biometrics used for authentication, and forgeries of this behavioral biometric are quite widespread. Biometric databases are also difficult to access for training purposes due to privacy issues. The efficiency of automated authentication systems has been severely harmed as a result of this. Verification of static handwritten signatures with high efficiency remains an open research problem to date. This paper proposes an innovative introselect median filter for preprocessing and a novel Gaussian gated recurrent unit neural network (2GRUNN) as a classifier for designing an automatic verifier for handwritten signatures. The proposed classifier has achieved an FPR of 1.82 and an FNR of 3.03. The efficacy of the proposed method has been compared with the various existing neural network-based verifiers. |
---|---|
ISSN: | 2047-4938 2047-4946 |
DOI: | 10.1049/2023/5087083 |