Study of the Hydrothermal-Catalytic Influence on the Oil-Bearing Rocks of the Usinskoye Oil Field

In this work, a synthesis of an oil-soluble iron-based catalyst precursor was carried out and its efficiency was tested in a laboratory simulation of the aquathermolysis process at different temperatures. The rocks of the Usinskoe field from the Permian deposits of the Komi Republic, obtained by ste...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Catalysts 2022-10, Vol.12 (10), p.1268
Hauptverfasser: Mukhamatdinov, Irek I., Lapin, Artem V., Mukhamatdinova, Rezeda E., Akhmadiyarov, Aydar A., Affane, Boudkhil, Emel’yanov, Dmitriy A., Slavkina, Olga V., Vakhin, Alexey V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, a synthesis of an oil-soluble iron-based catalyst precursor was carried out and its efficiency was tested in a laboratory simulation of the aquathermolysis process at different temperatures. The rocks of the Usinskoe field from the Permian deposits of the Komi Republic, obtained by steam-gravity drainage, and the iron-based catalyst precursor, as well as the products of non-catalytic and catalytic aquathermolysis, were selected as the object of study. As a result, it was found that the content of alkanes in the samples after thermal steam treatment (TST) at 300 °C increased 8-fold compared to the original oil, and the content of cycloalkanes in the sample with the catalyst increased 2-fold compared to the control experience. This may indicate that not only the carbon-heteroatom bonds (C-S, N, O) but also the C-C bonds were broken. It also shows that increasing the iron tallate concentration at TST 300 °C leads to a decrease in the molecular mass of the oil compared to the control experiment. According to SEM, the catalyst is nanodisperse particles with a size of ≈60–80 nm, which are adsorbed on the rock surface, catalyst removal occurs at a small scale.
ISSN:2073-4344
2073-4344
DOI:10.3390/catal12101268