Multi-Functional Chitosan Nanovesicles Loaded with Bioactive Manganese for Potential Wound Healing Applications
Chronic skin wound is a chronic illness that possesses a risk of infection and sepsis. In particular, infections associated with antibiotic-resistant bacterial strains are challenging to treat. To combat this challenge, a suitable alternative that is complementary to antibiotics is desired for wound...
Gespeichert in:
Veröffentlicht in: | Molecules (Basel, Switzerland) Switzerland), 2023-08, Vol.28 (16), p.6098 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Chronic skin wound is a chronic illness that possesses a risk of infection and sepsis. In particular, infections associated with antibiotic-resistant bacterial strains are challenging to treat. To combat this challenge, a suitable alternative that is complementary to antibiotics is desired for wound healing. In this work, we report multi-functional nanoscale chitosan vesicles loaded with manganese (Chi-Mn) that has potential to serve as a new tool to augment traditional antibiotic treatment for skin wound healing. Chi-Mn showed antioxidant activity increase over time as well as antimicrobial activity against E. coli and P. aeruginosa PA01. The modified motility assay that mimicked a skin wound before bacterial colonization showed inhibition of bacterial growth with Chi-Mn treatment at a low area density of 0.04 µg of Mn per cm2. Furthermore, this study demonstrated the compatibility of Chi-Mn with a commercial antibiotic showing no loss of antimicrobial potency. In vitro cytotoxicity of Chi-Mn was assessed with macrophages and dermal cell lines (J774A.1 and HDF) elucidating biocompatibility at a wide range (2 ppm–256 ppm). A scratch wound assay involving human dermal fibroblast (HDF) cells was performed to assess any negative effect of Chi-Mn on cell migration. Confocal microscopy study confirmed that Chi-Mn tested at the MIC (16 ppm Mn) has no effect on cell migration with respect to control. Overall, this study demonstrated the potential of Chi-Mn nanovesicles for wound healing applications. |
---|---|
ISSN: | 1420-3049 1420-3049 |
DOI: | 10.3390/molecules28166098 |