High-throughput screening for identifying acetylcholinesterase inhibitors: Insights on novel inhibitors and the use of liver microsomes

Rapid, higher throughput, and predictive toxicological methods are needed to assess vast numbers of chemicals with unknown safety profiles. A current effort towards this goal is Toxicology in the 21st Century (Tox21), a United States government consortium using a battery of in vitro assays to screen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SLAS discovery 2022-01, Vol.27 (1), p.65-67
Hauptverfasser: Santillo, Michael F., Xia, Menghang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Rapid, higher throughput, and predictive toxicological methods are needed to assess vast numbers of chemicals with unknown safety profiles. A current effort towards this goal is Toxicology in the 21st Century (Tox21), a United States government consortium using a battery of in vitro assays to screen a library of 10,000 compounds relevant to food, drug, and environmental safety. Recently, we implemented in vitro assays for measuring acetylcholinesterase (AChE) inhibition, a mechanism of toxicity, into Tox21’s high-throughput screening campaign (Li S., et al. Environ Health Persp 2021;129:047008, doi:10.1289/EHP6993). In this Commentary, we provide detailed insights on two topics related to our article: (1) prioritizing recently discovered AChE inhibitors from our screening based upon physiological relevance and (2) incorporating human liver microsomes into the AChE inhibition assay to identify metabolically active AChE inhibitors.
ISSN:2472-5552
2472-5560
DOI:10.1016/j.slasd.2021.10.002