Direct observation of tensile-strain-induced nanoscale magnetic hardening
Magnetoelasticity is the bond between magnetism and mechanics, but the intricate mechanisms via which magnetic states change due to mechanical strain remain poorly understood. Here, we provide direct nanoscale observations of how tensile strain modifies magnetic domains in a ferromagnetic Ni thin pl...
Gespeichert in:
Veröffentlicht in: | Nature communications 2023-07, Vol.14 (1), p.3963-3963, Article 3963 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Magnetoelasticity is the bond between magnetism and mechanics, but the intricate mechanisms via which magnetic states change due to mechanical strain remain poorly understood. Here, we provide direct nanoscale observations of how tensile strain modifies magnetic domains in a ferromagnetic Ni thin plate using in situ Fresnel defocus imaging, off-axis electron holography and a bimetallic deformation device. We present quantitative measurements of magnetic domain wall structure and its transformations as a function of strain. We observe the formation and dissociation of strain-induced periodic 180° magnetic domain walls perpendicular to the strain axis. The magnetization transformation exhibits stress-determined directional sensitivity and is reversible and tunable through the size of the nanostructure. In this work, we provide direct evidence for expressive and deterministic magnetic hardening in ferromagnetic nanostructures, while our experimental approach allows quantifiable local measurements of strain-induced changes in the magnetic states of nanomaterials.
When strain is applied to some magnetic materials, the magnetic properties and magnetization can change drastically. This coupling is referred to as magnetoelasticity, and while its history of study is long, it is still not a well-understood phenomenon. In this work, Kong et al. shed light on magnetoelasticity using a variety of experimental probes. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-023-39650-8 |