Inference Based on the Stochastic Expectation Maximization Algorithm in a Kumaraswamy Model with an Application to COVID-19 Cases in Chile

Extensive research has been conducted on models that utilize the Kumaraswamy distribution to describe continuous variables with bounded support. In this study, we examine the trapezoidal Kumaraswamy model. Our objective is to propose a parameter estimation method for this model using the stochastic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics (Basel) 2023-06, Vol.11 (13), p.2894
Hauptverfasser: Figueroa-Zúñiga, Jorge, Toledo, Juan G, Lagos-Alvarez, Bernardo, Leiva, Víctor, Navarrete, Jean P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Extensive research has been conducted on models that utilize the Kumaraswamy distribution to describe continuous variables with bounded support. In this study, we examine the trapezoidal Kumaraswamy model. Our objective is to propose a parameter estimation method for this model using the stochastic expectation maximization algorithm, which effectively tackles the challenges commonly encountered in the traditional expectation maximization algorithm. We then apply our results to the modeling of daily COVID-19 cases in Chile.
ISSN:2227-7390
2227-7390
DOI:10.3390/math11132894