Comparative Study on the Volatile Organic Compounds and Characteristic Flavor Fingerprints of Five Varieties of Walnut Oil in Northwest China Using Using Headspace Gas Chromatography-Ion Mobility Spectrometry

Odor is an important characteristic of walnut oil; walnut oil aromas from different varieties smell differently. In order to compare the differences of volatile flavor characteristics in different varieties of walnut oil, the volatile organic compounds (VOCs) of walnut oil from five different walnut...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecules (Basel, Switzerland) Switzerland), 2023-03, Vol.28 (7), p.2949
Hauptverfasser: Sun, Lina, Qi, Yanlong, Meng, Meng, Cui, Kuanbo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Odor is an important characteristic of walnut oil; walnut oil aromas from different varieties smell differently. In order to compare the differences of volatile flavor characteristics in different varieties of walnut oil, the volatile organic compounds (VOCs) of walnut oil from five different walnut varieties in Northwest China were detected and analyzed using headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS). The results showed that 41 VOCs in total were identified in walnut oil from five different varieties, including 14 aldehydes, 8 alcohols, 4 ketones, and 2 esters. Walnut oil (WO) extracted from the "Zha343" variety was most abundant in VOCs. The relative odor activity value (ROAV) analysis showed that aldehydes were the main aroma substances of walnut oil; specifically, hexanal, pentanal, and heptanal were the most abundant. Fingerprints and heat map analysis indicated that WO extracted from the "Xin2", "185", "Xin'guang", and "Zha343" varieties, but not from the "Xinfeng" variety, had characteristic markers. The relative content differences of eight key VOCs in WO from five varieties can be directly compared by Kruskal-Wallis tests, among which the distribution four substances, hexanal (M), hexanal (D), pentanal (M), (E)-2-hexanal (M), presented extremely significant differences (P
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules28072949