A multi-objective optimization method based on NSGA-III for water quality sensor placement with the aim of reducing potential contamination of important nodes
One way to mitigate the risk of consumption of contaminated water in water distribution networks is optimal placement of the quality sensors. A considerable challenge in this respect is the significance of contamination at a junction. Beside the population affected and the volume of the contaminated...
Gespeichert in:
Veröffentlicht in: | Water science & technology. Water supply 2022-01, Vol.22 (1), p.928-944 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | One way to mitigate the risk of consumption of contaminated water in water distribution networks is optimal placement of the quality sensors. A considerable challenge in this respect is the significance of contamination at a junction. Beside the population affected and the volume of the contaminated water consumed, importance of each junction is a parameter that must be taken into account in placing the sensors. This parameter directly concerns the service provided by each junction as well as the sensitivity and social consequences of junction contamination. The present study defines a new objective function for minimizing the effect of junction contamination with respect to its importance. Using a robust approach, this study applied the NSGA-III algorithm to solve a 5-objective problem. The algorithm was tested on a hypothetical network and a benchmark network and the Pareto response was selected for each scenario based on the slope of the different points. The proposed method suggested 12, 12, and 11 sensors for the three scenarios in the hypothetical network. The results show that sensor placement by this method yielded good performance in comparison with the other solutions presented in a benchmark network. |
---|---|
ISSN: | 1606-9749 1607-0798 |
DOI: | 10.2166/ws.2021.222 |