Mannan-binding lectin regulates dendritic cell maturation and cytokine production induced by lipopolysaccharide

Mannan-binding lectin (MBL) is a pattern-recognition molecule present in serum, which is involved in the innate immune defense by activating complement and promoting opsonophagocytosis. Dendritic cells (DCs) are professional antigen presenting cells (APCs) that are crucial for the initiation of adap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC immunology 2011-01, Vol.12 (1), p.1-1, Article 1
Hauptverfasser: Wang, Mingyong, Zhang, Yani, Chen, Yue, Zhang, Liyun, Lu, Xiao, Chen, Zhengliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mannan-binding lectin (MBL) is a pattern-recognition molecule present in serum, which is involved in the innate immune defense by activating complement and promoting opsonophagocytosis. Dendritic cells (DCs) are professional antigen presenting cells (APCs) that are crucial for the initiation of adaptive immunity. Lipopolysaccharide (LPS) has been shown to be a strong activator of the inflammatory response and immune regulation. We first examined whether MBL modulated LPS-induced cellular responses, then investigated possible mechanisms of its inhibitory effect. MBL at higher concentrations (10-20 μg/ml) significantly attenuated LPS-induced maturation of monocyte-derived DCs (MDCs) and production of proinflammatory cytokines (e.g., IL-12 and TNF-α), and inhibited their ability to activate allogeneic T lymphocytes. It bound to immature MDCs at physiological calcium concentrations, and was optimal at supraphysiological calcium concentrations. MBL also bound directly to immature MDCs and attenuated the binding of LPS to the cell surfaces, resulting in decreased LPS-induced nuclear factor-κB (NF-κB) activity in these cells. All these data suggest that MBL could affect the functions of DCs by modifying LPS-induced cellular responses. This study supports an important role for MBL in the regulation of adaptive immune responses and inflammatory responses.
ISSN:1471-2172
1471-2172
DOI:10.1186/1471-2172-12-1