Existence and asymptotic behavior of nontrivial solution for Klein–Gordon–Maxwell system with steep potential well
In this paper, we consider the following nonlinear Klein–Gordon–Maxwell system with a steep potential well { − Δ u + ( λ a ( x ) + 1 ) u − μ ( 2 ω + ϕ ) ϕ u = f ( x , u ) , in R 3 , Δ ϕ = μ ( ω + ϕ ) u 2 , in R 3 , where ω > 0 is a constant, μ and λ are positive parameters, f ∈ C ( R 3 × R , R )...
Gespeichert in:
Veröffentlicht in: | Electronic journal of qualitative theory of differential equations 2023-05, Vol.2023 (17), p.1-18 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we consider the following nonlinear Klein–Gordon–Maxwell system with a steep potential well
{
−
Δ
u
+
(
λ
a
(
x
)
+
1
)
u
−
μ
(
2
ω
+
ϕ
)
ϕ
u
=
f
(
x
,
u
)
,
in
R
3
,
Δ
ϕ
=
μ
(
ω
+
ϕ
)
u
2
,
in
R
3
,
where
ω
>
0
is a constant,
μ
and
λ
are positive parameters,
f
∈
C
(
R
3
×
R
,
R
)
and the nonlinearity
f
satisfies the Ambrosetti–Rabinowitz condition. We use parameter-dependent compactness lemma to prove the existence of nontrivial solution for
μ
small and
λ
large enough, then explore the asymptotic behavior as
μ
→
0
and
λ
→
∞
. Moreover, we also use truncation technique to study the existence and asymptotic behavior of positive solution of Klein–Gordon–Maxwell system when
f
(
u
)
:=
|
u
|
q
−
2
u
where
2
<
q
<
4
. |
---|---|
ISSN: | 1417-3875 1417-3875 |
DOI: | 10.14232/ejqtde.2023.1.17 |