New Exact Solutions Describing Quantum Asymmetric Top

In this work, using the noncommutative integration method of linear differential equations, we obtain a complete set of solutions to the Schrodinger equation for a quantum asymmetric top in Euler angles. It is shown that the noncommutative reduction of the Schrodinger equation leads to the Lame equa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry (Basel) 2023-02, Vol.15 (2), p.503
Hauptverfasser: Breev, Alexander, Gitman, Dmitry
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, using the noncommutative integration method of linear differential equations, we obtain a complete set of solutions to the Schrodinger equation for a quantum asymmetric top in Euler angles. It is shown that the noncommutative reduction of the Schrodinger equation leads to the Lame equation. The resulting set of solutions is determined by the Lame polynomials in a complex parameter, which is related to the geometry of the orbits of the coadjoint representation of the rotation group. The spectrum of an asymmetric top is obtained from the condition that the solutions are invariant with respect to a special irreducible λ-representation of the rotation group.
ISSN:2073-8994
2073-8994
DOI:10.3390/sym15020503