Detection of Audio Tampering Based on Electric Network Frequency Signal

The detection of audio tampering plays a crucial role in ensuring the authenticity and integrity of multimedia files. This paper presents a novel approach to identifying tampered audio files by leveraging the unique Electric Network Frequency (ENF) signal, which is inherent to the power grid and ser...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2023-08, Vol.23 (16), p.7029
Hauptverfasser: Hsu, Hsiang-Ping, Jiang, Zhong-Ren, Li, Lo-Ya, Tsai, Tsai-Chuan, Hung, Chao-Hsiang, Chang, Sheng-Chain, Wang, Syu-Siang, Fang, Shih-Hau
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The detection of audio tampering plays a crucial role in ensuring the authenticity and integrity of multimedia files. This paper presents a novel approach to identifying tampered audio files by leveraging the unique Electric Network Frequency (ENF) signal, which is inherent to the power grid and serves as a reliable indicator of authenticity. The study begins by establishing a comprehensive Chinese ENF database containing diverse ENF signals extracted from audio files. The proposed methodology involves extracting the ENF signal, applying wavelet decomposition, and utilizing the autoregressive model to train effective classification models. Subsequently, the framework is employed to detect audio tampering and assess the influence of various environmental conditions and recording devices on the ENF signal. Experimental evaluations conducted on our Chinese ENF database demonstrate the efficacy of the proposed method, achieving impressive accuracy rates ranging from 91% to 93%. The results emphasize the significance of ENF-based approaches in enhancing audio file forensics and reaffirm the necessity of adopting reliable tamper detection techniques in multimedia authentication.
ISSN:1424-8220
1424-8220
DOI:10.3390/s23167029