Choquard-type equations with Hardy–Littlewood–Sobolev upper-critical growth

We are concerned with the existence of ground states and qualitative properties of solutions for a class of nonlocal Schrödinger equations. We consider the case in which the nonlinearity exhibits critical growth in the sense of the Hardy–Littlewood–Sobolev inequality, in the range of the so-called u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in nonlinear analysis 2019-01, Vol.8 (1), p.1184-1212
Hauptverfasser: Cassani, Daniele, Zhang, Jianjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We are concerned with the existence of ground states and qualitative properties of solutions for a class of nonlocal Schrödinger equations. We consider the case in which the nonlinearity exhibits critical growth in the sense of the Hardy–Littlewood–Sobolev inequality, in the range of the so-called upper-critical exponent. Qualitative behavior and concentration phenomena of solutions are also studied. Our approach turns out to be robust, as we do not require the nonlinearity to enjoy monotonicity nor Ambrosetti–Rabinowitz-type conditions, still using variational methods.
ISSN:2191-9496
2191-950X
DOI:10.1515/anona-2018-0019