Multi-scale lidar measurements suggest miombo woodlands contain substantially more carbon than thought
Miombo woodlands are integral to livelihoods across southern Africa, biodiversity in the region, and the global carbon cycle, making accurate and precise monitoring of their state and change essential. Here, we assembled a terrestrial and airborne lidar dataset covering 50 kha of intact and degraded...
Gespeichert in:
Veröffentlicht in: | Communications earth & environment 2024-07, Vol.5 (1), p.366-11, Article 366 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Miombo woodlands are integral to livelihoods across southern Africa, biodiversity in the region, and the global carbon cycle, making accurate and precise monitoring of their state and change essential. Here, we assembled a terrestrial and airborne lidar dataset covering 50 kha of intact and degraded miombo woodlands, and generated aboveground biomass estimates with low uncertainty via direct 3D measurements of forest structure. We found 1.71 ± 0.09 TgC was stored in aboveground biomass across this landscape, between 1.5 and 2.2 times more than the 0.79–1.14 TgC estimated by conventional methods. This difference is in part owing to the systematic underestimation of large trees by allometry. If these results were extrapolated across Africa’s miombo woodlands, their carbon stock would potentially require an upward revision of approximately 3.7 PgC, implying we currently underestimate their carbon sequestration and emissions potential, and disincentivise their protection and restoration. |
---|---|
ISSN: | 2662-4435 2662-4435 |
DOI: | 10.1038/s43247-024-01448-x |