Development of liposomal pemetrexed for enhanced therapy against multidrug resistance mediated by ABCC5 in breast cancer

Breast cancer is the most common cancer among women. Pemetrexed, a new generation antifolate drug, is one of the primary treatments for breast cancer. However, multidrug resistance (MDR) in breast cancer greatly hampers the therapeutic efficacy of chemotherapies such as pemetrexed. Nanomedicine is e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of nanomedicine 2018-01, Vol.13, p.1327-1339
Hauptverfasser: Bai, Fang, Yin, You, Chen, Ting, Chen, Jihui, Ge, Meixin, Lu, Yunshu, Xie, Fangyuan, Zhang, Jian, Wu, Kejin, Liu, Yan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Breast cancer is the most common cancer among women. Pemetrexed, a new generation antifolate drug, is one of the primary treatments for breast cancer. However, multidrug resistance (MDR) in breast cancer greatly hampers the therapeutic efficacy of chemotherapies such as pemetrexed. Nanomedicine is emerging as a promising alternative technique to overcome cancer MDR. Thus, pemetrexed-loaded d-alpha tocopheryl polyethylene glycol 1000 succinate (vitamin E TPGS) liposomes (liposomal pemetrexed) were developed as a strategy to overcome MDR to pemetrexed in breast cancer. Liposomal pemetrexed was developed using the calcium acetate gradient method. The cytotoxic effects, apoptosis-inducing activity, in vivo distribution, and antitumor activity of liposomal pemetrexed were investigated. Liposomal pemetrexed was small in size (160.77 nm), with a small polydispersity of
ISSN:1178-2013
1176-9114
1178-2013
DOI:10.2147/IJN.S150237