Roots of mappings from manifolds
: Assume that is a proper map of a connected -manifold into a Hausdorff, connected, locally path-connected, and semilocally simply connected space , and has a neighborhood homeomorphic to Euclidean -space. The proper Nielsen number of at and the absolute degree of at are defined in this setting. The...
Gespeichert in:
Veröffentlicht in: | Fixed point theory and applications (Hindawi Publishing Corporation) 2004-12, Vol.2004 (4), p.643139-643139 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | : Assume that is a proper map of a connected -manifold into a Hausdorff, connected, locally path-connected, and semilocally simply connected space , and has a neighborhood homeomorphic to Euclidean -space. The proper Nielsen number of at and the absolute degree of at are defined in this setting. The proper Nielsen number is shown to a lower bound on the number of roots at among all maps properly homotopic to , and the absolute degree is shown to be a lower bound among maps properly homotopic to and transverse to . When , these bounds are shown to be sharp. An example of a map meeting these conditions is given in which, in contrast to what is true when is a manifold, Nielsen root classes of the map have different multiplicities and essentialities, and the root Reidemeister number is strictly greater than the Nielsen root number, even when the latter is nonzero. |
---|---|
ISSN: | 1687-1812 1687-1820 1687-1812 |
DOI: | 10.1186/1687-1812-2004-643139 |