Research on the Time-Domain Explicit and Implicit Solution Methods of the Shallow Water Seismic Wavefield Equations

The current time-domain solution methods for the wavefield equations of a single medium do not apply to the wavefield equations of shallow water seismic with a fluid–elastomer coupling. To solve this problem, based on the explicit central difference method and implicit Newmark method, the explicit–e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2024-02, Vol.14 (4), p.1598
Hauptverfasser: Cao, Weihao, Cheng, Guangli, Liu, Bao, Cai, Yangfan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The current time-domain solution methods for the wavefield equations of a single medium do not apply to the wavefield equations of shallow water seismic with a fluid–elastomer coupling. To solve this problem, based on the explicit central difference method and implicit Newmark method, the explicit–explicit method, implicit–implicit method, and explicit–implicit method time-domain expressions for the local solution are derived, and the time-domain expressions for the explicit and implicit methods in the global solution are derived.The stability and computational efficiency of different time-domain solving methods for the shallow water seismic wavefield equations are theoretically analyzed. The numerical results are compared with the simulation data from the multiphysics field simulation software COMSOL 6.0, and the numerical stability, computational efficiency and accuracy of the different solving methods are also analyzed theoretically. The results show that the implicit method in the global solution is relatively optimal among the methods proposed in this paper, which ensures numerical stability at the larger step size for improving the computational efficiency and considers the higher computational efficiency and accuracy.
ISSN:2076-3417
2076-3417
DOI:10.3390/app14041598