Face Recognition from Still Images to Video Sequences: A Local-Feature-Based Framework
Although automatic faces recognition has shown success for high-quality images under controlled conditions, for video-based recognition it is hard to attain similar levels of performance. We describe in this paper recent advances in a project being undertaken to trial and develop advanced surveillan...
Gespeichert in:
Veröffentlicht in: | EURASIP journal on image and video processing 2011-01, Vol.2011 (1), p.790598 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Although automatic faces recognition has shown success for high-quality images under controlled conditions, for video-based recognition it is hard to attain similar levels of performance. We describe in this paper recent advances in a project being undertaken to trial and develop advanced surveillance systems for public safety. In this paper, we propose a local facial feature based framework for both still image and video-based face recognition. The evaluation is performed on a still image dataset LFW and a video sequence dataset MOBIO to compare 4 methods for operation on feature: feature averaging (Avg-Feature), Mutual Subspace Method (MSM), Manifold to Manifold Distance (MMS), and Affine Hull Method (AHM), and 4 methods for operation on distance on 3 different features. The experimental results show that Multi-region Histogram (MRH) feature is more discriminative for face recognition compared to Local Binary Patterns (LBP) and raw pixel intensity. Under the limitation on a small number of images available per person, feature averaging is more reliable than MSM, MMD, and AHM and is much faster. Thus, our proposed framework-averaging MRH feature is more suitable for CCTV surveillance systems with constraints on the number of images and the speed of processing. |
---|---|
ISSN: | 1687-5176 1687-5281 |