Distribution of cross-tropopause convection within the Asian monsoon region from May through October 2017

We constructed a database of cross-tropopause convection in the Asian monsoon region for the months of May through October of 2017 using overshooting tops (OTs), deep convective features that penetrate the local cirrus anvil layer and the local tropopause, with Meteosat-8 geostationary satellite det...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atmospheric chemistry and physics 2023-03, Vol.23 (5), p.3279-3298
Hauptverfasser: Clapp, Corey E, Smith, Jessica B, Bedka, Kristopher M, Anderson, James G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We constructed a database of cross-tropopause convection in the Asian monsoon region for the months of May through October of 2017 using overshooting tops (OTs), deep convective features that penetrate the local cirrus anvil layer and the local tropopause, with Meteosat-8 geostationary satellite detections. The database of 40 918 OTs represents a hemispheric record of convection covering the study domain from 10∘ S to 55∘ N and from 40 to 115∘ E. With this database, we analyzed the geographic, monthly, and altitude distribution of this convection and compared it to the convective distributions represented by satellite observations of outgoing longwave radiation (OLR) and precipitation. We find that cross-tropopause convection is most active during the months of May through August (with daily averages of these months above 300 OTs per day) and declines through September and October. Most of this convection occurs within Northern India and Southern India, the Bay of Bengal, and the Indian Ocean regions, which together account for 75.1 % of all OTs. We further identify distinct, differing seasonal trends within the study subregions. For the Northern India, Southern India, and Bay of Bengal regions, the distribution of OTs follows the development of the Asian monsoon, with its north–south movement across the study period. This work demonstrates that when evaluating the effects of convection on lower stratospheric composition over the Asian monsoon region, it is important to consider the impact of cross-tropopause convection specifically, as well as the contributions from both land-based and oceanic regions due to the significant geographic and monthly variation in convective activity.
ISSN:1680-7324
1680-7316
1680-7324
DOI:10.5194/acp-23-3279-2023