A Machine Learning Analysis of Health Records of Patients With Chronic Kidney Disease at Risk of Cardiovascular Disease

Chronic kidney disease (CKD) describes a long-term decline in kidney function and has many causes. It affects hundreds of millions of people worldwide every year. It can have a strong negative impact on patients, especially when combined with cardiovascular disease (CVD): patients with both conditio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2021, Vol.9, p.165132-165144
Hauptverfasser: Chicco, Davide, Lovejoy, Christopher A., Oneto, Luca
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chronic kidney disease (CKD) describes a long-term decline in kidney function and has many causes. It affects hundreds of millions of people worldwide every year. It can have a strong negative impact on patients, especially when combined with cardiovascular disease (CVD): patients with both conditions have lower survival chances. In this context, computational intelligence applied to electronic health records can provide insights to physicians that can help them make better decisions about prognoses or therapies. In this study we applied machine learning to medical records of patients with CKD and CVD. First, we predicted if patients develop severe CKD, both including and excluding information about the year it occurred or date of the last visit. Our methods achieved top mean Matthews correlation coefficient (MCC) of +0.499 in the former case and a mean MCC of +0.469 in the latter case. Then, we performed a feature ranking analysis to understand which clinical factors are most important: age, eGFR, and creatinine when the temporal component is absent; hypertension, smoking, and diabetes when the year is present. We then compared our results with the current scientific literature, and discussed the different results obtained when the time feature is excluded or included. Our results show that our computational intelligence approach can provide insights about diagnosis and relative important of different clinical variables that otherwise would be impossible to observe.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2021.3133700