Source apportionment of organic aerosol from 2-year highly time-resolved measurements by an aerosol chemical speciation monitor in Beijing, China
Organic aerosol (OA) represents a large fraction of submicron aerosols in the megacity of Beijing, yet long-term characterization of its sources and variations is very limited. Here we present an analysis of in situ measurements of OA in submicrometer particles with an aerosol chemical speciation mo...
Gespeichert in:
Veröffentlicht in: | Atmospheric chemistry and physics 2018-06, Vol.18 (12), p.8469-8489 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Organic aerosol (OA) represents a large fraction of submicron aerosols in the
megacity of Beijing, yet long-term characterization of its sources and
variations is very limited. Here we present an analysis of in situ
measurements of OA in submicrometer particles with an aerosol chemical
speciation monitor (ACSM) for 2 years from July 2011 to May 2013. The sources
of OA are analyzed with a multilinear engine (ME-2) by constraining three
primary OA factors including fossil-fuel-related OA (FFOA), cooking OA (COA),
and biomass burning OA (BBOA). Two secondary OAs (SOA), representing a less
oxidized oxygenated OA (LO-OOA) and a more oxidized (MO-OOA), are identified
during all seasons. The monthly average concentration OA varied from 13.6 to
46.7 µg m−3 with a strong seasonal pattern that is usually
highest in winter and lowest in summer. FFOA and BBOA show similarly
pronounced seasonal variations with much higher concentrations and
contributions in winter due to enhanced coal combustion and biomass burning
emissions. The contribution of COA to OA, however, is relatively stable
(10–15 %) across different seasons, yet presents significantly higher
values at low relative humidity levels (RH |
---|---|
ISSN: | 1680-7324 1680-7316 1680-7324 |
DOI: | 10.5194/acp-18-8469-2018 |