Source apportionment of organic aerosol from 2-year highly time-resolved measurements by an aerosol chemical speciation monitor in Beijing, China

Organic aerosol (OA) represents a large fraction of submicron aerosols in the megacity of Beijing, yet long-term characterization of its sources and variations is very limited. Here we present an analysis of in situ measurements of OA in submicrometer particles with an aerosol chemical speciation mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atmospheric chemistry and physics 2018-06, Vol.18 (12), p.8469-8489
Hauptverfasser: Sun, Yele, Xu, Weiqi, Zhang, Qi, Jiang, Qi, Canonaco, Francesco, Prévôt, André S. H, Fu, Pingqing, Li, Jie, Jayne, John, Worsnop, Douglas R, Wang, Zifa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Organic aerosol (OA) represents a large fraction of submicron aerosols in the megacity of Beijing, yet long-term characterization of its sources and variations is very limited. Here we present an analysis of in situ measurements of OA in submicrometer particles with an aerosol chemical speciation monitor (ACSM) for 2 years from July 2011 to May 2013. The sources of OA are analyzed with a multilinear engine (ME-2) by constraining three primary OA factors including fossil-fuel-related OA (FFOA), cooking OA (COA), and biomass burning OA (BBOA). Two secondary OAs (SOA), representing a less oxidized oxygenated OA (LO-OOA) and a more oxidized (MO-OOA), are identified during all seasons. The monthly average concentration OA varied from 13.6 to 46.7 µg m−3 with a strong seasonal pattern that is usually highest in winter and lowest in summer. FFOA and BBOA show similarly pronounced seasonal variations with much higher concentrations and contributions in winter due to enhanced coal combustion and biomass burning emissions. The contribution of COA to OA, however, is relatively stable (10–15 %) across different seasons, yet presents significantly higher values at low relative humidity levels (RH 
ISSN:1680-7324
1680-7316
1680-7324
DOI:10.5194/acp-18-8469-2018