Collocation Method via Jacobi Polynomials for Solving Nonlinear Ordinary Differential Equations

We extend a collocation method for solving a nonlinear ordinary differential equation (ODE) via Jacobi polynomials. To date, researchers usually use Chebyshev or Legendre collocation method for solving problems in chemistry, physics, and so forth, see the works of (Doha and Bhrawy 2006, Guo 2000, an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Journal of Mathematics and Mathematical Sciences 2011, Vol.2011 (2011), p.1174-1184-094
Hauptverfasser: Imani, Ahmad, Aminataei, Azim, Imani, Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We extend a collocation method for solving a nonlinear ordinary differential equation (ODE) via Jacobi polynomials. To date, researchers usually use Chebyshev or Legendre collocation method for solving problems in chemistry, physics, and so forth, see the works of (Doha and Bhrawy 2006, Guo 2000, and Guo et al. 2002). Choosing the optimal polynomial for solving every ODEs problem depends on many factors, for example, smoothing continuously and other properties of the solutions. In this paper, we show intuitionally that in some problems choosing other members of Jacobi polynomials gives better result compared to Chebyshev or Legendre polynomials.
ISSN:0161-1712
1687-0425
DOI:10.1155/2011/673085