Comparison of Urban Canopy Schemes and Surface Layer Schemes in the Simulation of a Heatwave in the Xiongan New Area
Due to rapid growth and expansion, Xiongan New Area is at risk for heatwaves in the present and future induced by the urban heat island effect. Based on eight combined schemes, including two common WRF surface layer schemes (MM5 and Eta) and urban canopy schemes (SLAB, UCM, BEP and BEP + BEM), simul...
Gespeichert in:
Veröffentlicht in: | Atmosphere 2022-09, Vol.13 (9), p.1472 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Due to rapid growth and expansion, Xiongan New Area is at risk for heatwaves in the present and future induced by the urban heat island effect. Based on eight combined schemes, including two common WRF surface layer schemes (MM5 and Eta) and urban canopy schemes (SLAB, UCM, BEP and BEP + BEM), simulation performance for 2-m temperature, 2-m relative humidity and 10-m wind during a heatwave in July 2019 was compared and analyzed. The simulation performance is ranked from best to worst: 2-m temperature, 2-m relative humidity, 10-m wind direction and 10-m wind speed. MM5 simulate 2-m temperature and 10-m wind speed better than Eta, but 2-m relative humidity worse. MM5 coupling BEP + BEM provides the highest simulation performance for 2-m air temperature, 10-m wind direction and 10-m wind speed but the worst for 2-m relative humidity. MM5 and Eta produce nearly opposite results for wind direction and wind speed. Due to the Anxin station close to Baiyang Lake, lake-land breeze affects the simulation findings, worsening the correlation between simulated 10-m wind and observation. |
---|---|
ISSN: | 2073-4433 2073-4433 |
DOI: | 10.3390/atmos13091472 |