Water-oriented magnetic anisotropy transition

Water reorientation is essential in a wide range of chemical and biological processes. However, the effects of such reorientation through rotation around the metal–oxygen bond on the chemical and physical properties of the resulting complex are usually ignored. Most studies focus on the donor proper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2021-05, Vol.12 (1), p.2738-2738, Article 2738
Hauptverfasser: Su, Sheng-Qun, Wu, Shu-Qi, Hagihala, Masato, Miao, Ping, Tan, Zhijian, Torii, Shuki, Kamiyama, Takashi, Xiao, Tongtong, Wang, Zhenxing, Ouyang, Zhongwen, Miyazaki, Yuji, Nakano, Motohiro, Nakanishi, Takumi, Li, Jun-Qiu, Kanegawa, Shinji, Sato, Osamu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Water reorientation is essential in a wide range of chemical and biological processes. However, the effects of such reorientation through rotation around the metal–oxygen bond on the chemical and physical properties of the resulting complex are usually ignored. Most studies focus on the donor property of water as a recognized σ donor-type ligand rather than a participant in the π interaction. Although a theoretical approach to study water-rotation effects on the functionality of a complex has recently been conducted, it has not been experimentally demonstrated. In this study, we determine that the magnetic anisotropy of a Co(II) complex can be effectively controlled by the slight rotation of coordinating water ligands, which is achieved by a two-step structural phase transition. When the water molecule is rotated by 21.2 ± 0.2° around the Co–O bond, the directional magnetic susceptibility of the single crystal changes by approximately 30% along the a -axis due to the rotation of the magnetic anisotropy axis through the modification of the π interaction between cobalt(II) and the water ligand. The theoretical calculations further support the hypothesis that the reorientation of water molecules is a key factor contributing to the magnetic anisotropy transition of this complex. Little is known about how the orientation of coordinated water molecules affects the magnetic properties of single molecule magnets. Here the authors combine experimental data and theoretical calculations to study how the rotation of water molecules alters the magnetic anisotropy of a pyrazine-based cobalt(II) complex.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-23057-4