Modelling circulation in an ice-covered lake
In deep ice-covered lakes with temperatures below 4 °C the heat flux from the bottom sediment results in a horizontal density gradient and a consequent flow along the bottom slope. Measurements in Lake Pääjärvi, Finland, show a stable temperature field where a heat gain through the bottom and a heat...
Gespeichert in:
Veröffentlicht in: | Estonian journal of earth sciences 2010-12, Vol.59 (4), p.298-309 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In deep ice-covered lakes with temperatures below 4 °C the heat flux from the bottom sediment results in a horizontal density gradient and a consequent flow along the bottom slope. Measurements in Lake Pääjärvi, Finland, show a stable temperature field where a heat gain through the bottom and a heat loss through the ice nearly balance each other. The circulation is thermal with low velocities (less than 1.5 cm s–1). We used the 3D hydrodynamic Princeton Ocean Model as a tool to simulate the water circulation and the temperature distribution under the ice. The model forcing was based on field temperature measurements. The model simulations suggest that in midwinter the velocity field of the upper water layers is anticyclonic while that of deep layers is cyclonic. Comparison with current measurements at one site showed good agreement between the modelled and observed results. On the basis of the modelled results it is possible to better understand the distributions of some micro-organisms and the accumulation of oxygen depleted waters in the deepest part of the lake. |
---|---|
ISSN: | 1736-4728 1736-7557 |
DOI: | 10.3176/earth.2010.4.06 |