Sustainable use of giant reed to produce industrialized enzymes
The giant reed (Arundo donax) is a fast-growing plant adapted to different climatic and soil conditions; although its origin is Asian, the species has spread throughout the world. During its development, it consumes three times more water than typical native vegetation and is responsible for changin...
Gespeichert in:
Veröffentlicht in: | Heliyon 2023-08, Vol.9 (8), p.e18748-e18748, Article e18748 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The giant reed (Arundo donax) is a fast-growing plant adapted to different climatic and soil conditions; although its origin is Asian, the species has spread throughout the world. During its development, it consumes three times more water than typical native vegetation and is responsible for changing the landscape of riparian areas; the high biomass productivity and the annual harvest period make this crop an alternative to produce and/or extract industrial bioproducts. The main objective of this research was to evaluate the feasibility of using giant reed in a bioprocess that produces enzymes by a solid-state fermentation experiment, four fungal species were tested (Aspergillus niger GH1, Aspergillus niger PSH, Trichoderma harzianum, and Rhizopus oryzae); enzyme activities were performed using reported methodologies varying only reaction volumes. The A. niger GH1 and PSH strains were the best adapted to the plant material, A. niger GH1 was capable to produce 4 of the 5 evaluated enzymes (cellulase-endoglucanase (174.39 ± 19.62 U/L), xylanase (1313.31 ± 39.25 U/L), invertase (642.22 ± 23.55 U/L), and polyphenol oxidase (6094.01 ± 306.54) while A. niger PSH was able to produce 3 of the 5 evaluated enzymes (cellulase-endoglucanase (147.09 ± 13.88 U/L), xylanase (1307.76 ± 31.40 U/L), and invertase (603.92 ± 3.14 U/L). |
---|---|
ISSN: | 2405-8440 2405-8440 |
DOI: | 10.1016/j.heliyon.2023.e18748 |