Fluorination of poly(dimethylsiloxane) surfaces by low pressure CF4 plasma – physicochemical and antifouling properties

Fluorinated surface groups were introduced into poly(dimethylsiloxane) (PDMS) coatings by plasma treatment using a low pressure radio frequency discharge operated with tetrafluoromethane. Substrates were placed in a remote position downstream the discharge. Discharge power and treatment time were tu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Express polymer letters 2009, Vol.3 (2), p.70-83
Hauptverfasser: Cordeiro, A. L., Nitschke, M., Janke, A., Helbig, R., D'Souza, F., Donnelly, G. T., Willemsen, P. R., Werner, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fluorinated surface groups were introduced into poly(dimethylsiloxane) (PDMS) coatings by plasma treatment using a low pressure radio frequency discharge operated with tetrafluoromethane. Substrates were placed in a remote position downstream the discharge. Discharge power and treatment time were tuned to alter the chemical composition of the plasma treated PDMS surface. The physicochemical properties and stability of the fluorine containing PDMS were characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and contact angle measurements. Smooth PDMS coatings with a fluorine content up to 47% were attainable. The CF4 plasma treatment generated a harder, non-brittle layer at the top-most surface of the PDMS. No changes of surface morphology were observed upon one week incubation in aqueous media. Surprisingly, the PDMS surface was more hydrophilic after the introduction of fluorine. This may be explained by an increased exposure of oxygen containing moieties towards the surface upon re-orientation of fluorinated groups towards the bulk, and/or be a consequence of oxidation effects associated with the plasma treatment. Experiments with strains of marine bacteria with different surface energies, Cobetia marina and Marinobacter hydrocarbonoclasticus, showed a significant decrease of bacteria attachment upon fluorination of the PDMS surface. Altogether, the CF4 plasma treatments successfully introduced fluorinated groups into the PDMS, being a robust and versatile surface modification technology that may find application where a minimization of bacterial adhesion is required.
ISSN:1788-618X
1788-618X
DOI:10.3144/expresspolymlett.2009.11