Magnetic and Electronic Properties of π-d Interacting Molecular Magnetic Superconductor κ-(BETS)2FeX4 (X = Cl, Br) Studied by Angle-Resolved Heat Capacity Measurements

Thermodynamic picture induced by π-d interaction in a molecular magnetic superconductor κ-(BETS)2FeX4 (X = Cl, Br), where BETS is bis(ethylenedithio)tetraselenafulvalene, studied by single crystal calorimetry is reviewed. Although the S = 5/2 spins of Fe3+ in the anion layers form a three-dimensiona...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Crystals (Basel) 2019-01, Vol.9 (2), p.66
Hauptverfasser: Fukuoka, Shuhei, Fukuchi, Sotarou, Akutsu, Hiroki, Kawamoto, Atsushi, Nakazawa, Yasuhiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Thermodynamic picture induced by π-d interaction in a molecular magnetic superconductor κ-(BETS)2FeX4 (X = Cl, Br), where BETS is bis(ethylenedithio)tetraselenafulvalene, studied by single crystal calorimetry is reviewed. Although the S = 5/2 spins of Fe3+ in the anion layers form a three-dimensional long-range ordering with nearly full entropy of Rln6, a broad hump structure appears in the temperature dependence of the magnetic heat capacity only when the magnetic field is applied parallel to the a axis, which is considered as the magnetic easy axis. The scaling of the temperature dependence of the magnetic heat capacity of the two salts is possible using the parameter of |Jdd|/kB and therefore the origin of the hump structure is related to the direct magnetic interaction, Jdd, that is dominant in the system. Quite unusual crossover from a three-dimensional ordering to a one-dimensional magnet occurs when magnetic fields are applied parallel to the a axis. A notable anisotropic field-direction dependence against the in-plane magnetic field was also observed in the transition temperature of the bulk superconductivity by the angle-resolved heat capacity measurements. We discuss the origin of this in-plane anisotropy in terms of the 3d electron spin configuration change induced by magnetic fields.
ISSN:2073-4352
2073-4352
DOI:10.3390/cryst9020066