Epilepsy EEG classification using morphological component analysis

In this paper, we have proposed an application of sparse-based morphological component analysis (MCA) to address the problem of classification of the epileptic seizure using time series electroencephalogram (EEG). MCA was employed to decompose the EEG signal segments considering its morphology durin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:EURASIP journal on advances in signal processing 2018-08, Vol.2018 (1), p.1-12, Article 52
Hauptverfasser: Mahapatra, Arindam Gajendra, Singh, Balbir, Wagatsuma, Hiroaki, Horio, Keiichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we have proposed an application of sparse-based morphological component analysis (MCA) to address the problem of classification of the epileptic seizure using time series electroencephalogram (EEG). MCA was employed to decompose the EEG signal segments considering its morphology during epileptic events using undecimated wavelet transform (UDWT), local discrete cosine transform (LDCT), and Dirac bases forming the over-complete dictionary. Frequency-modulated time frequency features were extracted after applying the Hilbert transform. Feature root mean instantaneous frequency square (RMIFS) and its parameters and parameters ratio are used in two different pairs for classification using support vector machine (SVM), showing good and comparable results.
ISSN:1687-6180
1687-6172
1687-6180
DOI:10.1186/s13634-018-0568-2