Epilepsy EEG classification using morphological component analysis
In this paper, we have proposed an application of sparse-based morphological component analysis (MCA) to address the problem of classification of the epileptic seizure using time series electroencephalogram (EEG). MCA was employed to decompose the EEG signal segments considering its morphology durin...
Gespeichert in:
Veröffentlicht in: | EURASIP journal on advances in signal processing 2018-08, Vol.2018 (1), p.1-12, Article 52 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we have proposed an application of sparse-based morphological component analysis (MCA) to address the problem of classification of the epileptic seizure using time series electroencephalogram (EEG). MCA was employed to decompose the EEG signal segments considering its morphology during epileptic events using undecimated wavelet transform (UDWT), local discrete cosine transform (LDCT), and Dirac bases forming the over-complete dictionary. Frequency-modulated time frequency features were extracted after applying the Hilbert transform. Feature root mean instantaneous frequency square (RMIFS) and its parameters and parameters ratio are used in two different pairs for classification using support vector machine (SVM), showing good and comparable results. |
---|---|
ISSN: | 1687-6180 1687-6172 1687-6180 |
DOI: | 10.1186/s13634-018-0568-2 |