Noninvasive sub-organ ultrasound stimulation for targeted neuromodulation

Tools for noninvasively modulating neural signaling in peripheral organs will advance the study of nerves and their effect on homeostasis and disease. Herein, we demonstrate a noninvasive method to modulate specific signaling pathways within organs using ultrasound (U/S). U/S is first applied to spl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2019-03, Vol.10 (1), p.952-952, Article 952
Hauptverfasser: Cotero, Victoria, Fan, Ying, Tsaava, Tea, Kressel, Adam M., Hancu, Ileana, Fitzgerald, Paul, Wallace, Kirk, Kaanumalle, Sireesha, Graf, John, Rigby, Wayne, Kao, Tzu-Jen, Roberts, Jeanette, Bhushan, Chitresh, Joel, Suresh, Coleman, Thomas R., Zanos, Stavros, Tracey, Kevin J., Ashe, Jeffrey, Chavan, Sangeeta S., Puleo, Christopher
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tools for noninvasively modulating neural signaling in peripheral organs will advance the study of nerves and their effect on homeostasis and disease. Herein, we demonstrate a noninvasive method to modulate specific signaling pathways within organs using ultrasound (U/S). U/S is first applied to spleen to modulate the cholinergic anti-inflammatory pathway (CAP), and US stimulation is shown to reduce cytokine response to endotoxin to the same levels as implant-based vagus nerve stimulation (VNS). Next, hepatic U/S stimulation is shown to modulate pathways that regulate blood glucose and is as effective as VNS in suppressing the hyperglycemic effect of endotoxin exposure. This response to hepatic U/S is only found when targeting specific sub-organ locations known to contain glucose sensory neurons, and both molecular (i.e. neurotransmitter concentration and cFOS expression) and neuroimaging results indicate US induced signaling to metabolism-related hypothalamic sub-nuclei. These data demonstrate that U/S stimulation within organs provides a new method for site-selective neuromodulation to regulate specific physiological functions. Stimulation of peripheral nerve activity may be used to treat metabolic and inflammatory disorders, but current approaches need implanted devices. Here, the authors present a non-invasive approach, and show that ultrasound-mediated stimulation can be targeted to specific sub-organ locations in preclinical models and alter the response of metabolic and inflammatory neural pathways.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-019-08750-9