Improving georeferencing accuracy of Very High Resolution satellite imagery using freely available ancillary data at global coverage

While impressive direct geolocation accuracies better than 5.0 m CE90 (90% of circular error) can be achieved from the last DigitalGlobe's Very High Resolution (VHR) satellites (i.e. GeoEye-1 and WorldView-1/2/3/4), it is insufficient for many precise geodetic applications. For these sensors, t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of digital earth 2017-10, Vol.10 (10), p.1055-1069
Hauptverfasser: Aguilar, Manuel A., Nemmaoui, Abderrahim, Aguilar, Fernando J., Novelli, Antonio, García Lorca, Andrés
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:While impressive direct geolocation accuracies better than 5.0 m CE90 (90% of circular error) can be achieved from the last DigitalGlobe's Very High Resolution (VHR) satellites (i.e. GeoEye-1 and WorldView-1/2/3/4), it is insufficient for many precise geodetic applications. For these sensors, the best horizontal geopositioning accuracies (around 0.55 m CE90) can be attained by using third-order 3D rational functions with vendor's rational polynomial coefficients data refined by a zero-order polynomial adjustment obtained from a small number of very accurate ground control points (GCPs). However, these high-quality GCPs are not always available. In this work, two different approaches for improving the initial direct geolocation accuracy of VHR satellite imagery are proposed. Both of them are based on the extraction of three-dimensional GCPs from freely available ancillary data at global coverage such as multi-temporal information of Google Earth and the Shuttle Radar Topography Mission 30 m digital elevation model. The application of these approaches on WorldView-2 and GeoEye-1 stereo pairs over two different study sites proved to improve the horizontal direct geolocation accuracy values around of 75%.
ISSN:1753-8947
1753-8955
DOI:10.1080/17538947.2017.1280549