Development of In Situ Gelling Meloxicam-Human Serum Albumin Nanoparticle Formulation for Nose-to-Brain Application

The aim of this study was to develop an intranasal in situ thermo-gelling meloxicam-human serum albumin (MEL-HSA) nanoparticulate formulation applying poloxamer 407 (P407), which can be administered in liquid state into the nostril, and to increase the resistance of the formulation against mucocilia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pharmaceutics 2021-05, Vol.13 (5), p.646, Article 646
Hauptverfasser: Katona, Gabor, Sipos, Bence, Budai-Szucs, Maria, Balogh, Gyorgy Tibor, Veszelka, Szilvia, Grof, Ilona, Deli, Maria A., Volk, Balazs, Szabo-Revesz, Piroska, Csoka, Ildiko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim of this study was to develop an intranasal in situ thermo-gelling meloxicam-human serum albumin (MEL-HSA) nanoparticulate formulation applying poloxamer 407 (P407), which can be administered in liquid state into the nostril, and to increase the resistance of the formulation against mucociliary clearance by sol-gel transition on the nasal mucosa, as well as to improve drug absorption. Nanoparticle characterization showed that formulations containing 12-15% w/w P407 met the requirements of intranasal administration. The Z-average (in the range of 180-304 nm), the narrow polydispersity index (PdI, from 0.193 to 0.328), the zeta potential (between -9.4 and -7.0 mV) and the hypotonic osmolality (200-278 mOsmol/L) of MEL-HSA nanoparticles predict enhanced drug absorption through the nasal mucosa. Based on the rheological, muco-adhesion, drug release and permeability studies, the 14% w/w P407 containing formulation (MEL-HSA-P14%) was considered as the optimized formulation, which allows enhanced permeability of MEL through blood-brain barrier-specific lipid fraction. Cell line studies showed no cell damage after 1-h treatment with MEL-HSA-P14% on RPMI 2650 human endothelial cells' moreover, enhanced permeation (four-fold) of MEL from MEL-HSA-P14% was observed in comparison to pure MEL. Overall, MEL-HSA-P14% can be promising for overcoming the challenges of nasal drug delivery.
ISSN:1999-4923
1999-4923
DOI:10.3390/pharmaceutics13050646