Validity of semiclassical limit to quantum gravity in two-mode oscillating quantized massive scalar field quantum cosmology
Semiclassical Einstein equations are used to describe the interaction of the back-reaction of the classical gravitational field with quantum matter fields in semiclassical gravity. We in our previous studies have made use of the semiclassical approximation to demonstrate the phenomenon of particle p...
Gespeichert in:
Veröffentlicht in: | The European physical journal. C, Particles and fields Particles and fields, 2022-04, Vol.82 (4), p.1-38, Article 333 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Semiclassical Einstein equations are used to describe the interaction of the back-reaction of the classical gravitational field with quantum matter fields in semiclassical gravity. We in our previous studies have made use of the semiclassical approximation to demonstrate the phenomenon of particle production, often called preheating/reheating of the universe, which occurs after the inflationary epoch during the oscillatory phase of two-mode quantized scalar field of chaotic inflationary model. During this oscillatory phase, back-reaction effects from the created particles, on account of the quantum nature of the states considered, could be significant and one might be concerned about the validity of the semiclassical approximation in these two-mode quantum optical states. The validity of the semiclassical approximation in these states is examined and it is presented how the magnitude of states parameter draws limit on the applicability and reliability of semiclassical theory of gravity. It is argued that semiclassical theory to gravity is a good approximation for states which are closer to coherent states i.e., with coherent parameters greater than unity and with squeezed parameter much smaller than unity. |
---|---|
ISSN: | 1434-6052 1434-6044 1434-6052 |
DOI: | 10.1140/epjc/s10052-022-10248-6 |