Multi-scene application of intelligent inspection robot based on computer vision in power plant

As industries develop, the automation and intelligence level of power plants is constantly improving, and the application of patrol robots is also increasingly widespread. This research combines computer vision technology and particle swarm optimization algorithm to build an obstacle recognition mod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2024-05, Vol.14 (1), p.10657-14, Article 10657
Hauptverfasser: Lin, Lulu, Guo, Jianxian, Liu, Lincheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As industries develop, the automation and intelligence level of power plants is constantly improving, and the application of patrol robots is also increasingly widespread. This research combines computer vision technology and particle swarm optimization algorithm to build an obstacle recognition model and obstacle avoidance model of an intelligent patrol robot in a power plant respectively. Firstly, the traditional convolutional recurrent neural network is optimized, and the obstacle recognition model of an intelligent patrol robot is built by combining the connection timing classification algorithm. Then, the artificial potential field method optimizes the traditional particle swarm optimization algorithm, and an obstacle avoidance model of an intelligent patrol robot is built. The performance of the two models was tested, and it was found that the highest precision, recall, and F1 values of the identification model were 0.978, 0.974, and 0.975. The highest precision, recall, and F1 values of the obstacle avoidance model were 0.97, 0.96, and 0.96 respectively. The two optimization models designed in this research have better performance. In conclusion, the two models in this study are superior to the traditional methods in recognition effect and obstacle avoidance efficiency, providing an effective technical scheme for intelligent patrol inspection of power plants.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-024-56795-8