Sequence Analysis of Long-Term Readmissions among High-Impact Users of Cerebrovascular Patients
Objective. Understanding the chronological order of the causes of readmissions may help us assess any repeated chain of events among high-impact users, those with high readmission rate. We aim to perform sequence analysis of administrative data to identify distinct sequences of emergency readmission...
Gespeichert in:
Veröffentlicht in: | Stroke research and treatment 2017-01, Vol.2017 (2017), p.1-12 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Objective. Understanding the chronological order of the causes of readmissions may help us assess any repeated chain of events among high-impact users, those with high readmission rate. We aim to perform sequence analysis of administrative data to identify distinct sequences of emergency readmissions among the high-impact users. Methods. A retrospective cohort of all cerebrovascular patients identified through national administrative data and followed for 4 years. Results. Common discriminating subsequences in chronic high-impact users (n=2863) of ischaemic stroke (n=34208) were “urological conditions-chest infection,” “chest infection-urological conditions,” “injury-urological conditions,” “chest infection-ambulatory condition,” and “ambulatory condition-chest infection” (p |
---|---|
ISSN: | 2090-8105 2042-0056 2042-0056 |
DOI: | 10.1155/2017/7062146 |