Vehicle Make and Model Recognition as an Open-Set Recognition Problem and New Class Discovery
One of the main limitations of traditional neural-network-based classifiers is the assumption that all query data are well represented within their training set. Unfortunately, in real-life scenarios, this is often not the case, and unknown class data may appear during testing, which drastically wea...
Gespeichert in:
Veröffentlicht in: | Mathematical and computational applications 2023-07, Vol.28 (4), p.80 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | One of the main limitations of traditional neural-network-based classifiers is the assumption that all query data are well represented within their training set. Unfortunately, in real-life scenarios, this is often not the case, and unknown class data may appear during testing, which drastically weakens the robustness of the algorithms. For this type of problem, open-set recognition (OSR) proposes a new approach where it is assumed that the world knowledge of algorithms is incomplete, so they must be prepared to detect and reject objects of unknown classes. However, the goal of this approach does not include the detection of new classes hidden within the rejected instances, which would be beneficial to increase the model’s knowledge and classification capability, even after training. This paper proposes an OSR strategy with an extension for new class discovery aimed at vehicle make and model recognition. We use a neuroevolution technique and the contrastive loss function to design a domain-specific CNN that generates a consistent distribution of feature vectors belonging to the same class within the embedded space in terms of cosine similarity, maintaining this behavior in unknown classes, which serves as the main guide for a probabilistic model and a clustering algorithm to simultaneously detect objects of new classes and discover their classes. The results show that the presented strategy works effectively to address the VMMR problem as an OSR problem and furthermore is able to simultaneously recognize the new classes hidden within the rejected objects. OSR is focused on demonstrating its effectiveness with benchmark databases that are not domain-specific. VMMR is focused on improving its classification accuracy; however, since it is a real-world recognition problem, it should have strategies to deal with unknown data, which has not been extensively addressed and, to the best of our knowledge, has never been considered from an OSR perspective, so this work also contributes as a benchmark for future domain-specific OSR. |
---|---|
ISSN: | 2297-8747 1300-686X 2297-8747 |
DOI: | 10.3390/mca28040080 |