Existence of solutions for higher order $\phi-$Laplacian BVPs on the half-line using a one-sided Nagumo condition with nonordered upper and lower solutions

In this paper, we consider the following \((n+1)\)st order bvp on the half line with a \(\phi-\)Laplacian operator \[ \begin{cases} (\phi(u^{(n)}))'(t) = f(t,u(t),\ldots,u^{(n)}(t)), & \text{a.e.},\, t\in [0,+\infty), \\ n \in \mathbb{N}\setminus\{0\}, \\  \\ u^{(i)}(0) = A_{i}, \, i=0,\ldo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cubo (Temuco, Chile) Chile), 2023-08, Vol.25 (2), p.173-193
Hauptverfasser: Zerki, A., Bachouche, K., Ait-Mahiout, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we consider the following \((n+1)\)st order bvp on the half line with a \(\phi-\)Laplacian operator \[ \begin{cases} (\phi(u^{(n)}))'(t) = f(t,u(t),\ldots,u^{(n)}(t)), & \text{a.e.},\, t\in [0,+\infty), \\ n \in \mathbb{N}\setminus\{0\}, \\  \\ u^{(i)}(0) = A_{i}, \, i=0,\ldots,n-2, \\ u^{(n-1)}(0) + au^{(n)}(0) = B, \\ u^{(n)}(+\infty) = C. \end{cases} \] The existence of solutions is obtained by applying Schaefer's fixed point theorem under a one-sided Nagumo condition with nonordered lower and upper solutions method where \(f\) is a \(L^{1}\)-Carathéodory function.
ISSN:0719-0646
0716-7776
0719-0646
DOI:10.56754/0719-0646.2502.173