Deletion of the Histone Deacetylase HdaA in Endophytic Fungus Penicillium chrysogenum Fes1701 Induces the Complex Response of Multiple Bioactive Secondary Metabolite Production and Relevant Gene Cluster Expression
Epigenetic regulation plays a critical role in controlling fungal secondary metabolism. Here, we report the pleiotropic effects of the epigenetic regulator HdaA (histone deacetylase) on secondary metabolite production and the associated biosynthetic gene clusters (BGCs) expression in the plant endop...
Gespeichert in:
Veröffentlicht in: | Molecules (Basel, Switzerland) Switzerland), 2020-08, Vol.25 (16), p.3657 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Epigenetic regulation plays a critical role in controlling fungal secondary metabolism. Here, we report the pleiotropic effects of the epigenetic regulator HdaA (histone deacetylase) on secondary metabolite production and the associated biosynthetic gene clusters (BGCs) expression in the plant endophytic fungus
Fes1701. Deletion of the
gene in strain Fes1701 induced a significant change of the secondary metabolite profile with the emergence of the bioactive indole alkaloid meleagrin. Simultaneously, more meleagrin/roquefortine-related compounds and less chrysogine were synthesized in the
strain. Transcriptional analysis of relevant gene clusters in
and wild strains indicated that disruption of
had different effects on the expression levels of two BGCs: the meleagrin/roquefortine BGC was upregulated, while the chrysogine BGC was downregulated. Interestingly, transcriptional analysis demonstrated that different functional genes in the same BGC had different responses to the disruption of
. Thereinto, the
gene, which encodes a key catalyzing enzyme in meleagrin biosynthesis, showed the highest upregulation in the
strain (84.8-fold). To our knowledge, this is the first report of the upregulation of HdaA inactivation on meleagrin/roquefortine alkaloid production in the endophytic fungus
. Our results suggest that genetic manipulation based on the epigenetic regulator HdaA is an important strategy for regulating the productions of secondary metabolites and expanding bioactive natural product resources in endophytic fungi. |
---|---|
ISSN: | 1420-3049 1420-3049 |
DOI: | 10.3390/molecules25163657 |