Deletion of the Histone Deacetylase HdaA in Endophytic Fungus Penicillium chrysogenum Fes1701 Induces the Complex Response of Multiple Bioactive Secondary Metabolite Production and Relevant Gene Cluster Expression

Epigenetic regulation plays a critical role in controlling fungal secondary metabolism. Here, we report the pleiotropic effects of the epigenetic regulator HdaA (histone deacetylase) on secondary metabolite production and the associated biosynthetic gene clusters (BGCs) expression in the plant endop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecules (Basel, Switzerland) Switzerland), 2020-08, Vol.25 (16), p.3657
Hauptverfasser: Ding, Zhuang, Zhou, Haibo, Wang, Xiao, Huang, Huiming, Wang, Haotian, Zhang, Ruiyan, Wang, Zhengping, Han, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Epigenetic regulation plays a critical role in controlling fungal secondary metabolism. Here, we report the pleiotropic effects of the epigenetic regulator HdaA (histone deacetylase) on secondary metabolite production and the associated biosynthetic gene clusters (BGCs) expression in the plant endophytic fungus Fes1701. Deletion of the gene in strain Fes1701 induced a significant change of the secondary metabolite profile with the emergence of the bioactive indole alkaloid meleagrin. Simultaneously, more meleagrin/roquefortine-related compounds and less chrysogine were synthesized in the strain. Transcriptional analysis of relevant gene clusters in and wild strains indicated that disruption of had different effects on the expression levels of two BGCs: the meleagrin/roquefortine BGC was upregulated, while the chrysogine BGC was downregulated. Interestingly, transcriptional analysis demonstrated that different functional genes in the same BGC had different responses to the disruption of . Thereinto, the gene, which encodes a key catalyzing enzyme in meleagrin biosynthesis, showed the highest upregulation in the strain (84.8-fold). To our knowledge, this is the first report of the upregulation of HdaA inactivation on meleagrin/roquefortine alkaloid production in the endophytic fungus . Our results suggest that genetic manipulation based on the epigenetic regulator HdaA is an important strategy for regulating the productions of secondary metabolites and expanding bioactive natural product resources in endophytic fungi.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules25163657