Access to emergency hospital care provided by the public sector in sub-Saharan Africa in 2015: a geocoded inventory and spatial analysis

Timely access to emergency care can substantially reduce mortality. International benchmarks for access to emergency hospital care have been established to guide ambitions for universal health care by 2030. However, no Pan-African database of where hospitals are located exists; therefore, we aimed t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Lancet global health 2018-03, Vol.6 (3), p.e342-e350
Hauptverfasser: Ouma, Paul O, Maina, Joseph, Thuranira, Pamela N, Macharia, Peter M, Alegana, Victor A, English, Mike, Okiro, Emelda A, Snow, Robert W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Timely access to emergency care can substantially reduce mortality. International benchmarks for access to emergency hospital care have been established to guide ambitions for universal health care by 2030. However, no Pan-African database of where hospitals are located exists; therefore, we aimed to complete a geocoded inventory of hospital services in Africa in relation to how populations might access these services in 2015, with focus on women of child bearing age. We assembled a geocoded inventory of public hospitals across 48 countries and islands of sub-Saharan Africa, including Zanzibar, using data from various sources. We only included public hospitals with emergency services that were managed by governments at national or local levels and faith-based or non-governmental organisations. For hospital listings without geographical coordinates, we geocoded each facility using Microsoft Encarta (version 2009), Google Earth (version 7.3), Geonames, Fallingrain, OpenStreetMap, and other national digital gazetteers. We obtained estimates for total population and women of child bearing age (15–49 years) at a 1 km2 spatial resolution from the WorldPop database for 2015. Additionally, we assembled road network data from Google Map Maker Project and OpenStreetMap using ArcMap (version 10.5). We then combined the road network and the population locations to form a travel impedance surface. Subsequently, we formulated a cost distance algorithm based on the location of public hospitals and the travel impedance surface in AccessMod (version 5) to compute the proportion of populations living within a combined walking and motorised travel time of 2 h to emergency hospital services. We consulted 100 databases from 48 sub-Saharan countries and islands, including Zanzibar, and identified 4908 public hospitals. 2701 hospitals had either full or partial information about their geographical coordinates. We estimated that 287 282 013 (29·0%) people and 64 495 526 (28·2%) women of child bearing age are located more than 2-h travel time from the nearest hospital. Marked differences were observed within and between countries, ranging from less than 25% of the population within 2-h travel time of a public hospital in South Sudan to more than 90% in Nigeria, Kenya, Cape Verde, Swaziland, South Africa, Burundi, Comoros, São Tomé and Príncipe, and Zanzibar. Only 16 countries reached the international benchmark of more than 80% of their populations living within a 2-h travel time
ISSN:2214-109X
2214-109X
DOI:10.1016/S2214-109X(17)30488-6