The Efficacy and Safety of Treating Acquired MET Resistance Through Combinations of Parent and MET Tyrosine Kinase Inhibitors in Patients With Metastatic Oncogene-Driven NSCLC

Acquired MET gene amplification, MET exon 14 skip mutations, or MET fusions can emerge as resistance mechanisms to tyrosine kinase inhibitors (TKIs) in patients with lung cancer. The efficacy and safety of combining MET TKIs (such as crizotinib, capmatinib, or tepotinib) with parent TKIs to target a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JTO clinical and research reports 2024-02, Vol.5 (2), p.100637-100637, Article 100637
Hauptverfasser: Patil, Tejas, Staley, Alyse, Nie, Yunan, Sakamoto, Mandy, Stalker, Margaret, Jurica, James M., Koehler, Kenna, Cass, Amanda, Kuykendall, Halle, Schmitt, Emily, Filar, Emma, Reventaite, Evelina, Davies, Kurt D., Nijmeh, Hala, Haag, Mary, Yoder, Benjamin A., Bunn, Paul A., Schenk, Erin L., Aisner, Dara L., Iams, Wade T., Marmarelis, Melina E., Camidge, D. Ross
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Acquired MET gene amplification, MET exon 14 skip mutations, or MET fusions can emerge as resistance mechanisms to tyrosine kinase inhibitors (TKIs) in patients with lung cancer. The efficacy and safety of combining MET TKIs (such as crizotinib, capmatinib, or tepotinib) with parent TKIs to target acquired MET resistance are not well characterized. Multi-institutional retrospective chart review identified 83 patients with metastatic oncogene-driven NSCLC that were separated into the following two pairwise matched cohorts: (1) MET cohort (n = 41)—patients with acquired MET resistance continuing their parent TKI with a MET TKI added or (2) Chemotherapy cohort (n = 42)—patients without any actionable resistance continuing their parent TKI with a platinum-pemetrexed added. Clinicopathologic features, radiographic response (by means of Response Evaluation Criteria in Solid Tumors version 1.1), survival outcomes, adverse events (AEs) (by means of Common Terminology Criteria for Adverse Events version 5.0), and genomic data were collected. Survival outcomes were assessed using Kaplan-Meier methods. Multivariate modeling adjusted for lines of therapy, brain metastases, TP53 mutations, and oligometastatic disease. Within the MET cohort, median age was 56 years (range: 36–83 y). Most patients were never smokers (28 of 41, 68.3%). Baseline brain metastases were common (21 of 41, 51%). The most common oncogenes in the MET cohort were EGFR (30 of 41, 73.2%), ALK (seven of 41, 17.1%), and ROS1 (two of 41, 4.9%). Co-occurring TP53 mutations (32 of 41, 78%) were frequent. Acquired MET alterations included MET gene amplification (37 of 41, 90%), MET exon 14 mutations (two of 41, 5%), and MET gene fusions (two of 41, 5%). After multivariate adjustment, the objective response rate (ORR) was higher in the MET cohort versus the chemotherapy cohort (ORR: 69.2% versus 20%, p 
ISSN:2666-3643
2666-3643
DOI:10.1016/j.jtocrr.2024.100637