A Methodology for the Prediction of Extreme Precipitation in Complex Terrains: A Case Study of Central Southwest China

Against the backdrop of global warming, extreme precipitation events have become more frequent. In complex terrain regions, due to the vulnerability of their ecosystems, extreme precipitation events can lead to significant secondary disasters. Utilizing daily rainfall data from the National Meteorol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water (Basel) 2024-01, Vol.16 (3), p.427
Hauptverfasser: Lei, Shiyun, Yu, Shujie, Sun, Jilin, Wang, Zhixuan, Liao, Yanzhen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Against the backdrop of global warming, extreme precipitation events have become more frequent. In complex terrain regions, due to the vulnerability of their ecosystems, extreme precipitation events can lead to significant secondary disasters. Utilizing daily rainfall data from the National Meteorological Information Center of China and statistical analysis, this study explores the spatial and temporal distribution of extreme precipitation in the Central Southwest China (CSC) region. The temporal pattern of extreme precipitation in CSC shows a consistent trend, while the spatial distribution reveals an opposite phase between the northern and southern parts of CSC. Based on this, we propose a new method for constructing extreme precipitation prediction models for complex terrain regions based on physical mechanisms, and take CSC area as a study case. Instead of anonymous feature selection, this method improves the accuracy and stability of the model by studying the impact of sea–air interactions on extreme precipitation and then introducing it into deep learning. It was found that the sea surface temperature (SST) anomaly in the South Indian Ocean affects extreme precipitation in the CSC by influencing uplift, atmospheric instability, and moisture. The SST anomaly also affects the intensity of cross-equatorial airflow, which changes the trajectory of the Pacific–Japan teleconnection wave and impacts extreme precipitation. These findings provide a comprehensive and reliable approach for forecasting extreme precipitation in CSC and are further integrated into the extreme precipitation prediction models.
ISSN:2073-4441
2073-4441
DOI:10.3390/w16030427