A Localized Surface Plasmon Resonance Sensing Method for Simultaneous Determination of Atenolol and Amiloride in Pharmaceutical Dosage Forms and Urine Samples

This contribution describes a simple, fast, and sensitive application of localized surface plasmon resonance effect of silver nanoparticles for simultaneous determination of antihypertensive drugs’ mixture atenolol and amiloride in both pharmaceutical dosage forms and in biological samples (urine)....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of analytical methods in chemistry 2018-01, Vol.2018 (2018), p.1-9
1. Verfasser: Zahry, Marwa R. El
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This contribution describes a simple, fast, and sensitive application of localized surface plasmon resonance effect of silver nanoparticles for simultaneous determination of antihypertensive drugs’ mixture atenolol and amiloride in both pharmaceutical dosage forms and in biological samples (urine). Silver nanoparticles were prepared by chemical reduction of silver nitrate using hydroxylamine HCL in an alkaline medium. Application of silver-hydroxylamine nanoparticles (SH NPs) provides many advantages including reproducibility, sensitivity, and cost effective way of analyte determination. Amiloride has four amino groups which act as attachment points on the surface of silver nanoparticles resulting in a synergistic effect on the absorption intensity of atenolol, leading to increase the sensitivity of the determination of both compounds. This method shows excellent advantages comparing with the previously reported methods, including accuracy, precision, and selectivity. The linear range of atenolol is 1 × 10−5–1 × 10−4 mol·L−1 and of amiloride is 1 × 10−6–1 × 10−5 mol·L−1. The limit of detection (LOD) values of atenolol and amiloride are 0.89 × 10−5 and 0.42 × 10−6 mol·L−1, respectively.
ISSN:2090-8865
2090-8873
DOI:10.1155/2018/9065249