Improved Model Predictive Direct Power Control for Parallel Distributed Generation in Grid-Tied Microgrids
This research proposes an improved finite control set direct power model predictive control method (FCS-DPMPC) for grid-tie distributed generation (DG). FCS-DPMPC predicts the system outcomes using the system model. During the next sampling time, a voltage vector is defined using the cost function t...
Gespeichert in:
Veröffentlicht in: | Energies (Basel) 2023-02, Vol.16 (3), p.1441 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This research proposes an improved finite control set direct power model predictive control method (FCS-DPMPC) for grid-tie distributed generation (DG). FCS-DPMPC predicts the system outcomes using the system model. During the next sampling time, a voltage vector is defined using the cost function to minimize the power ripple, consequently allowing flexibility for power regulation. Furthermore, the impact of implementing a one-step delay is studied and compensated through a model forecast pattern. In addition, a new two-step horizon technique has been developed to minimize switching frequency and computation burden. Simulation results for single DG and parallel operated DGs in a grid-tie manner confirm the effectiveness of the suggested control strategy, which signifies that this is an appropriate approach for distributed generation in microgrids. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en16031441 |