Link Prediction in Co-authorship Networks

Besides social network analysis, the Link-Prediction (LP) problem has useful applications in information retrieval, bioinformatics, telecommunications, microbiology, and e-commerce as a forecast of future links in a given context to find what possible connections are based on a local and global stat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science journal of University of Zakho (Online) 2022-11, Vol.10 (4), p.235-257
Hauptverfasser: Hasin, Hajar Ali, Hassan, Diman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Besides social network analysis, the Link-Prediction (LP) problem has useful applications in information retrieval, bioinformatics, telecommunications, microbiology, and e-commerce as a forecast of future links in a given context to find what possible connections are based on a local and global statistical analysis of the given graph data. However, in Academic Social Networks (ASNs), the LP issue has recently attracted a lot of attention in academia and called for a variety of link prediction techniques to predict co-authorship among researchers and to examine the rich structural and associated data. As a result, this study investigates the problem of LP in ASNs to forecast the upcoming co-authorships among researchers. In a systematic approach, this review presents, analyses, and compares the primary taxonomies of topological-based, content-based, and hybrid-based approaches, which are used for computing similar scores for each pair of unconnected nodes. Then, this study ends with findings on challenges and open problems for the community to work on for further development of the LP problem of scholarly social networks.
ISSN:2663-628X
2663-6298
DOI:10.25271/sjuoz.2022.10.4.1040