Применение кластерного анализа с элементами нечеткой логики для оценки окружающей обстановки группы робототехнических средств
Возникновение чрезвычайных ситуаций, которые угрожают жизни и здоровью людей, резко повышает требования к полноте и точности представления информации о текущей ситуации. Современные робототехнические средства оснащены датчиками, работающими на различных физических принципах. Это приводит к росту вхо...
Gespeichert in:
Veröffentlicht in: | Informatika i avtomatizaciâ (Online) 2020-08, Vol.19 (4), p.746-773 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng ; rus |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Возникновение чрезвычайных ситуаций, которые угрожают жизни и здоровью людей, резко повышает требования к полноте и точности представления информации о текущей ситуации. Современные робототехнические средства оснащены датчиками, работающими на различных физических принципах. Это приводит к росту входной информации, поступающей в управляющую систему. С учетом ограниченной производительности бортовой вычислительной системы, а также высокой априорной неопределенности наземной обстановки робототехнические средства не могут быть эффективно использованы без объединения получаемой информации от группы робототехнических средств и создания единой картины наземной обстановки. Решить задачу отождествления вектор-признаков, относящихся к одному объекту, а также оценить эффективность полученных решений можно по известным формулам теории проверки статистических гипотез и теории вероятностей только при нормальном законе распределения с известными математическим ожиданием вектор-признака и корреляционной матрицей. Однако перечисленные условия на практике, как правило, не выполняются. Предложен новый метод решения задачи отождествления вектор-признаков, не опирающийся на статистический подход, и, следовательно, не требующий знание вида закона распределения и значений его параметров. Предлагаемый метод основан на идее сочетания кластерного анализа и нечеткой логики и отличается сравнительной простой по отношению к базовым методам многомерной непараметрической статистики. Обсуждаются математические аспекты метода нечеткой кластеризации и возможное упрощение алгоритма нечеткого отождествления при временных ограничениях. Установлено, что применение нечеткой кластеризации объектов в сложной наземной обстановке позволяет уменьшить количество ложных распознаваний объектов по сравнению с существующим статистическим подходом, ориентированным на использование нормального закона распределения. Показано преимущество предлагаемого метода отождествления вектор-признаков объектов, даны сравнительные значения по количеству ложных распознаваний. Даны рекомендации построения правил нечеткого вывода при создании базы знаний экспертной системы. |
---|---|
ISSN: | 2713-3192 2713-3206 |
DOI: | 10.15622/sp.2020.19.4.2 |