Ballistic transport spectroscopy of spin-orbit-coupled bands in monolayer graphene on WSe2
Van der Waals interactions with transition metal dichalcogenides were shown to induce strong spin-orbit coupling (SOC) in graphene, offering great promises to combine large experimental flexibility of graphene with unique tuning capabilities of the SOC. Here, we probe SOC-driven band splitting and e...
Gespeichert in:
Veröffentlicht in: | Nature communications 2023-09, Vol.14 (1), p.6124-6124, Article 6124 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Van der Waals interactions with transition metal dichalcogenides were shown to induce strong spin-orbit coupling (SOC) in graphene, offering great promises to combine large experimental flexibility of graphene with unique tuning capabilities of the SOC. Here, we probe SOC-driven band splitting and electron dynamics in graphene on WSe
2
by measuring ballistic transverse magnetic focusing. We found a clear splitting in the first focusing peak whose evolution in charge density and magnetic field is well reproduced by calculations using the SOC strength of ~ 13 meV, and no splitting in the second peak that indicates stronger Rashba SOC. Possible suppression of electron-electron scatterings was found in temperature dependence measurement. Further, we found that Shubnikov-de Haas oscillations exhibit a weaker band splitting, suggesting that it probes different electron dynamics, calling for a new theory. Our study demonstrates an interesting possibility to exploit ballistic electron motion pronounced in graphene for emerging spin-orbitronics.
By combining graphene with transition metal dichalcogenides, such as WSe2, it is possible to induce a large spin-orbit interaction in the graphene layer. Here, Rao et al study the spin-orbit coupling in graphene/WSe2 heterostructures using the ballistic transport based technique, known transverse magnetic focusing. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-023-41826-1 |