Multi-step biosynthesis of the biodegradable polyester monomer 2-pyrone-4,6-dicarboxylic acid from glucose
2-Pyrone-4,6-dicarboxylic acid (PDC), a chemically stable pseudoaromatic dicarboxylic acid, represents a promising building block for the manufacture of biodegradable polyesters. Microbial production of PDC has been extensively investigated, but low titers and yields have limited industrial applicat...
Gespeichert in:
Veröffentlicht in: | Biotechnology for biofuels 2023-06, Vol.16 (1), p.92-92, Article 92 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | 2-Pyrone-4,6-dicarboxylic acid (PDC), a chemically stable pseudoaromatic dicarboxylic acid, represents a promising building block for the manufacture of biodegradable polyesters. Microbial production of PDC has been extensively investigated, but low titers and yields have limited industrial applications.
In this study, a multi-step biosynthesis strategy for the microbial production of PDC was demonstrated using engineered Escherichia coli whole-cell biocatalysts. The PDC biosynthetic pathway was first divided into three synthetic modules, namely the 3-dehydroshikimic acid (DHS) module, the protocatechuic acid (PCA) module and the PDC module. Several effective enzymes, including 3-dehydroshikimate dehydratase for the PCA module as well as protocatechuate 4,5-dioxygenase and 4-carboxy-2-hydroxymuconate-6-semialdehyde dehydrogenase for the PDC module were isolated and characterized. Then, the highly efficient whole-cell bioconversion systems for producing PCA and PDC were constructed and optimized, respectively. Finally, the efficient multi-step biosynthesis of PDC from glucose was achieved by smoothly integrating the above three biosynthetic modules, resulting in a final titer of 49.18 g/L with an overall 27.2% molar yield, which represented the highest titer for PDC production from glucose reported to date.
This study lays the foundation for the microbial production of PDC, including one-step de novo biosynthesis from glucose as well as the microbial transformation of monoaromatics. |
---|---|
ISSN: | 2731-3654 2731-3654 1754-6834 |
DOI: | 10.1186/s13068-023-02350-y |