Long time decay for 3D Navier-Stokes equations in Sobolev-Gevrey spaces
In this article, we study the long time decay of global solution to 3D incompressible Navier-Stokes equations. We prove that if $u\in{\mathcal C}([0,\infty),H^1_{a,\sigma}(\mathbb{R}^3))$ is a global solution, where $H^1_{a,\sigma}(\mathbb{R}^3)$ is the Sobolev-Gevrey spaces with parameters $a>0$...
Gespeichert in:
Veröffentlicht in: | Electronic journal of differential equations 2016-04, Vol.2016 (104), p.1-13 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, we study the long time decay of global solution to 3D incompressible Navier-Stokes equations. We prove that if $u\in{\mathcal C}([0,\infty),H^1_{a,\sigma}(\mathbb{R}^3))$ is a global solution, where $H^1_{a,\sigma}(\mathbb{R}^3)$ is the Sobolev-Gevrey spaces with parameters $a>0$ and $\sigma>1$, then $\|u(t)\|_{H^1_{a,\sigma}(\mathbb{R}^3)}$ decays to zero as time approaches infinity. Our technique is based on Fourier analysis. |
---|---|
ISSN: | 1072-6691 |