Ca-dimers, solvent layering, and dominant electrochemically active species in Ca(BH4)2 in THF
Divalent ions (Mg, Ca, and Zn) are being considered as competitive, safe, and earth-abundant alternatives to Li-ion electrochemistry, but present challenges for stable cycling due to undesirable interfacial phenomena. We explore the formation of electroactive species in the electrolyte Ca(BH 4 ) 2 ∣...
Gespeichert in:
Veröffentlicht in: | Nature communications 2024-02, Vol.15 (1), p.1397-12, Article 1397 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Divalent ions (Mg, Ca, and Zn) are being considered as competitive, safe, and earth-abundant alternatives to Li-ion electrochemistry, but present challenges for stable cycling due to undesirable interfacial phenomena. We explore the formation of electroactive species in the electrolyte Ca(BH
4
)
2
∣THF using molecular dynamics coupled with a continuum model of bulk and interfacial speciation. Free-energy analysis and unsupervised learning indicate a majority population of neutral Ca dimers and monomers with diverse molecular conformations and an order of magnitude lower concentration of the primary electroactive charged species – the monocation,
CaBH
4
+
– produced via disproportionation of neutral complexes. Dense layering of THF molecules within ~1 nm of the electrode surface strongly modulates local electrolyte species populations. A dramatic increase in monocation population in this interfacial zone is induced at negative bias. We see no evidence for electrochemical activity of fully-solvated Ca
2+
. The consequences for performance are discussed in light of this molecular-scale insight.
Alternatives to lithium-ion electrochemistry present challenges due to undesirable phenomena at the electrode-electrolyte interface. Through simulations, the authors find that the performance of a calcium-based electrolyte is driven entirely by molecular-scale processes within approximately 1 nm of the electrode. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-024-45672-7 |