Combining three-dimensional acoustic coring and a convolutional neural network to quantify species contributions to benthic ecosystems

The seafloor is inhabited by a large number of benthic invertebrates, and their importance in mediating carbon mineralization and biogeochemical cycles is recognized. However, the majority of fauna live below the sediment surface, so most means of survey rely on destructive sampling methods that are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Royal Society open science 2024-06, Vol.11 (6), p.240042-8
Hauptverfasser: Mizuno, Katsunori, Terayama, Kei, Ishida, Shoichi, Godbold, Jasmin A, Solan, Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The seafloor is inhabited by a large number of benthic invertebrates, and their importance in mediating carbon mineralization and biogeochemical cycles is recognized. However, the majority of fauna live below the sediment surface, so most means of survey rely on destructive sampling methods that are limited to documenting species presence rather than event driven activity and functionally important aspects of species behaviour. We have developed and tested a laboratory-based three-dimensional acoustic coring system that is capable of non-invasively visualizing the presence and activity of invertebrates within the sediment matrix. Here, we present reconstructed three-dimensional acoustic images of the sediment profile, with strong backscatter revealing the presence and position of individual benthic organisms. These data were used to train a three-dimensional convolutional neural network model and, using a combination of data augmentation and data correction techniques, we were able to identify individual species with an 88% accuracy. Combining three-dimensional acoustic coring with deep learning forms an effective and non-invasive means of providing detailed mechanistic information of species-sediment interactions, opening new opportunities to quantify species-specific contributions to ecosystems.
ISSN:2054-5703
2054-5703
DOI:10.1098/rsos.240042